Using pyXS-v2 to process protein solution scattering data

Lin Yang
Revised September, 2012

What is pyXS

pyXS is a set of python scripts that implement functions similar to those available in
view.gtk. It offers more flexibility since these codes can be utilized in python code
written by users to process the data or control the experiment.

This documentation describes how to use the pyXS package to process solution
scattering data. While data collected on the SAXS and WAXS detectors at beamline
X9 will be used as examples, the same procedures should also apply for data
collected elsewhere, as long as the image files that contain the scattering patterns
are readable by the python image library.

Availability and OS Compatibility

The pyXS package can be downloaded from the website of beamline X9 at NSLS:
http://www.bnl.gov/ps/x9/software/pyXS.htm . Since pyXS is based on python, in
principle it can run under all platforms that support python.

Installation

The pyXS package depends on the following software packages: python, numpy,
python image library (PIL), matplotlib. A portion of the code (RQconv) is written in
C. Therefore you will need to compile this module if the package from the web link
above does not contain a binary suitable for your OS. Doing so will also require the
SWIG software.

If you use Linux, you should use the package manager to install these required
software packages. If you use Mac, you can install these packages using fink
(http://www.finkproject.org/). Alternatively, you may be able to use the native
python packages that come 0S X (see discussion here:
http://www.python.org/download/mac/). But I have not tested this. And the fink
works fine for me. If you use Windows, you may have to download these packages
individually, and make sure that the python executables are included in your PATH
variable. The package from X9 web site includes a WIN32 binary compiled using
MinGW.

The web links for the require packages are listed below:

Python: http://www.python.org/download/

Numpy: http://www.scipy.org/Download

Matplotlib: http://matplotlib.sourceforge.net/

PIL: http://www.pythonware.com/products/pil/

(NOTE: An older version of PIL has a bug and cannot read some
TIFF files correctly. Make sure you have the most recent version the
X9 WAXS data you see do not make sense.)

SWIG: http://www.swig.org/

pyGTK: http://www.pygtk.org/

Overview of pyXS

The pyXS package include the following modules: DataZD.py, RQconv.py, and
sInXS.py.

The Data2D module reads (PIL) and displays (matplotlib) 2D scattering patterns
and perform the conversion between pixel position and receiprocal space
coordinates, q or (qr ¢:) (see more descriptions of X-ray scattering in the
documentation of view.gtk). DataZ2D relies on C code RQconv.c to convert data,
based on scattering geometry defined by the structure ExpPara. The line profile
extraction and annotation functions of view.gtk can be similarly accomplished using
functions defined in this module.

The sInXS module is used to process 1D solution scattering data produced by
Data2D. It can average from multiple scattering patterns, perform background
subtraction (dark current and buffer scattering) based on transmitted beam
intensity, and combine the SAXS and WAXS data simutaneously collected on the two
detectors at X9. This module also provides rudimentary capabilities for producing
Gunier plots and for approximate p(r) function calculations.

There are significant differences the between the original version of pyXS and pyXS-
v2 in the way they process solution scattering data. In the original version, multiple
images collected from the same sample are first converted into 1D data and
subtracted for detector dark current; these 1D data are then averaged together and
subtracted for buffer scattering. These steps are performs separately for the SAXS
and WAXS images. The 1D SAXS and WAXS data after buffer subtraction are then
merged into the final data that span the entire g-range. In pyXS-v2, merging of SAXS
and WAXS data occurs immediately after dark current subtraction. The merged
SAXS/WAXS 1D data are then averaged together and subtracted for buffer
scattering. PyXS-v2 also offers the option of buffer scattering subtraction based on
high-q data (water scattering).

Setting up for data processing

For data conversion to work properly, the parameters that describe the scattering
geometry must be defined. At X9, these parameters are usually defined in a file
named exp_setup.py, produced by the beamline staff before user experiments. You
can simply import it into your python codes that utlize pyXS. An example of the
exp_setup.py file is shown in the appendix.

The scattering geometry is established for the SAXS and WAXS detectors in
exp_setup.py. If only one detector is used, only one ExpPara needs to be defined. In
order to define the parameters in ExpPara, the scattering pattern from a standard
powder sample is measured. The simulated powder rings based on these
parameters are then compared to the measured standard pattern. The parameter
are adjusted to best match the two. This process can be done interactively using
view.gtk (see the documentation of view.gtk). An automatic refinement routine is
planned but not yet implemented.

From exp_setup.py:

ew = ExpPara() create a new ExpPara

ew.wavelength = 0.874 X-ray wavelength
ew.bm ctr x = 35 pixel position of the X-ray beam
ew.bm ctr_y = 1035

ew.ratioDw = 4.58 this is the sample-to-detector distance divided by
the width of the detector
orientation of the detector

0, 0, 0 for the SAXS detector

ew.det_orient = 45
ew.det_tilt = -19
ew.det_phi = 0
ew.grazing_incident = False
ew.flip = True

always false for solution scattering
True if the 2D image must be flipped diagonally

this is the case for the WAXS data collected at X9
only meaningful for grazing incident scattering
only meaningful for grazing incident scattering

ew.incident_angle = 0.2
ew.sample_normal = 0

SO R O W W W KW H KR R W

Next the g-grid for the 1D SAXS and WAXS scattering profile are defined. Note that
the grid does not have evenly spaced data points. However, a non-uniform data grid
(consisting of sections of uniform grids) must be pre-processed by mod_grid() to
ensure that the azimuthally averaged data do not contain artifacts.

From exp_setup.py:

qgrid = mod_qgrid(np.hstack((np.arange(0.004,0.05,0.001),
np.arange(0.05,0.1,0.002),
np.arange(0.1,0.5,0.005),
np.arange(0.5,1.0,0.01),
np.arange(1.0,2.05,0.03))))

The masks are defined to block off parts of the scattering pattern that should not be
included in the conversion from the 2D scattering patterns to 1D scattering profiles.
The mask files are specified when loading the dark current data, which are saved in
pickled files and are not recreated during data processing if they already exist. Note

that the exposure time for the dark current data should equal that for the actual
data.

From exp setup.py:

this file correspond to the averaged dark current

change/rebuild this file for new exposure time or gsaxs/gwaxs
DARK FILE S="dark-s.pkl"

DARK FILE W="dark-w.pkl"

if os.path.isfile(DARK_FILE_S) and os.path.isfile(DARK_FILE W):

pkl_file = open(DARK_FILE S, 'rb')

sdark = pk.load(pkl_file)

pkl file.close()

pkl_file = open(DARK_FILE W, 'rb')

wdark = pk.load(pkl_file)

pkl_file.close()

else:

sdark = Datald()

wdark = Datald()

sdark.load dark_from 2D(["darkla.90s_SAXS",
"darklb.90s_SAXS",
"darklc.90s_SAXS",
"darkld.90s_SAXS",
"darkle.90s_SAXS"],

es, "mask.SAXS" ,qgrid)

wdark.load dark_from 2D(["darkla.90s_WAXS",
"darklb.90s_WAXS",
"darklc.90s_WAXS",
"darkld.90s_WAXS",
"darkle.90s_WAXS"],

ew, "mask.WAXS" ,qgrid)

pickle doesn't like PIL objects

sdark.exp para = None

wdark.exp_para = None

pkl_file = open(DARK_FILE S, 'wb')

pk.dump(sdark, pkl_file)

pkl_file.close()

pkl_file = open(DARK_FILE W, 'wb')

pk.dump(wdark, pkl_file)

pkl_file.close()

The format of the mask file is similar to that used in view.gtk, except that polygons
can also be used. Here is an example of the mask file (used for the WAXS data
collected at X9):

From mask.WAXS:

A mask file should contain geometric shapes, each defined on one line.
“h” defines a “hole”, i.e. inverse of the circle, with pixels outside of the cicle
blocked off. The parameters are the center (x,y) and the radius.

518 518 645
“p” defines a polygon. The parameters define the vertices (x,y) of the polygon.
0 0 0 250 250 0 0 0
750 0 1042 0 1042 292 750 0
750 1042 1042 1042 1042 750 750 1042

“r” defines a rectangle. The parameters are the center (x,y), width and height, and the
rotation of the rectangle about its center.

R R KRB 3% 3%T0CT HD HHHh

536 521 4 1042 0
197 521 1 1042 0
518 521 1 1042 0
791 521 1 1042 0

The flat field data are loaded and saved similarly. For the data collected X9, flat field
correction for WAXS data is usually necessary.

From exp_setup.py:

flat field correction includes the incident angle correction
FLAT FILE S="flat-s.pkl"
FLAT FILE W="flat-w.pkl"

if os.path.isfile(FLAT_FILE W):

pkl_file = open(FLAT_FILE W, 'rb')

wflat = pk.load(pkl_file)

pkl_file.close()

else:

fdark Datald()

wflat Datald()

fdark.load dark from 2D(["Feb09-dark-00.300s WAXS",
"Feb09-dark-01.300s_WAXS",
"Feb09-dark-02.300s_WAXS",
"Feb09-dark-03.300s_WAXS",
"Feb09-dark-04.300s_WAXS",
"Feb09-dark-05.300s_ WAXS"],

ew, "mask.WAXS" ,wdark.qgrid)

wflat.load dark_from 2D(["Feb09-bright-00.300s_WAXS",

"Feb09-bright-01.300s_WAXS"],
ew, "mask.WAXS" ,wdark.qgrid)

wflat.data -= fdark.data

wflat.d2data -= fdark.d2data

wflat.err += fdark.err

wflat.save("wflat.dat")

wflat.exp para = None

del wflat.mask

pkl_file = open(FLAT_FILE W, 'wb')

pk.dump(wflat, pkl_ file)

pkl_file.close()

In the event that you suspect that the exp_setup.py file provided by the beamline
staff is incorrect, you can compare the simulated powder rings to the standard
patterns using view.gtk or the disp.py script in the appendix of this document and
revise the parameters or the mask accordingly.

Data processing

Data processing is accomplished in the proc_SWAXS() and proc_SAXS() functions
defined in the sInXS module. The arguments of these functions are commented
below:

From proc.py:

dl = proc_SWAXS(sys.argv[1l].split(), sample files
sys.argv([2].split(), buffer files
sdark,wdark, dark currenct data defined in exp_ setup
gmax=0.17,qmin=0.125, g-range for merging SAXS/WAXS data
reft=-1, if >0, reference trans value

conc=float(sys.argv[3]),
saveld=True,
waxsflat=wflat,

fix scale=-36.95

)

protein solution concentration

save the ave files

flat field data defined in exp_setup

if >0, scaling factor between SAXS and WAXS

HhOW W KR R W HH

The proc_SWAXS() and proc_SAXS() functions are defined as the following:

From slnXS.py:

def proc SWAXS(sfns,bfns,sdark,wdark=None,gmax=-1,gmin=-1,reft=-1,saveld=False,conc=0.,
saxsflat=None,waxsflat=None, fix scale=-1):

ds = avg_SWAXS(sfns,sdark,wdark,gmax,gmin,reft,plot_data=True,saveld=saveld,
saxsflat=saxsflat,waxsflat=waxsflat,fix scale=fix scale)

db = avg_SWAXS(bfns,sdark,wdark,gmax,gmin,reft,plot_data=True,saveld=saveld,
saxsflat=saxsflat,waxsflat=waxsflat,fix scale=fix scale)

virac = 0.001*conc/PROTEIN_WATER_DENSITY_RATIO

ds.bkg_cor(db,1.0-vfrac,plot_data=True)

return ds

def proc_SAXS(sfns,bfns,sdark,reft=-1,saveld=False,conc=0.,saxsflat=None):
ds = avg_SWAXS(sfns,sdark,reft=reft,plot_data=True,saveld=saveld,saxsflat=saxsflat)
db = avg_SWAXS(bfns,sdark,reft=reft,plot_data=True,saveld=saveld,saxsflat=saxsflat)
vfrac = 0.001*conc/PROTEIN_WATER_DENSITY_RATIO
ds.bkg_cor(db,1.0-vfrac,plot_data=True)
return ds

Both functions first convert the 2D images into 1D data by calling avg SWAXS(),
which processes the 2D image files with _SAXS and _'WAXS suffixes depending on
whether the dark current data are provided. Buffer scattering is then subtracted
based on the protein concentration, which should be considered as only a simple
scaling factor.

Note that the data and scripts shown below are contained in the Example.Sol
directory included in the software package.

1. Conversion of 2D data into 1D scattering profiles

Conversions of the 2D images into 1D scattering profiles take place within
avg_SWAXS(). This function produces two plots, showing the merged sample and
buffer data converted from each set of SAXS/WAXS pairs, and the average of all sets
for the given sample/buffer. Based on these plots, you should re-run the proc.py
script with the outlier image omitted.

10° 10°
—— lysb_5mg-1.90s —— lysb_5mg-1.90s

— lysb_Smg-2.90s — lysb_Smg-2.90s
—— lysb_Smg-3.90s - - averaged

- averaged

I 10° I 10?

10! 10*
107 107 10" 10° 10 107 10° 10" 10° 10

Buffer:
10° 10°
— lysb_buf-1.90s — lysb_buf-2.90s
__ lysb_buf-2.90s __ lysb_buf-3.90s
— lysb_buf-3.90s — - averaged

- averaged

I 10° I 10°

A A
Fig.1 Plots generated by avg_SWAXS(). It is clear from the plots on the left that one of the scattering
profiles is significantly different from the other two. This set of data is therefore discarded. The

reason for the difference is likely streaking around the beamstop.

You should also pay close attention to how well the SAXS and WAXS data match
within the overlapping g-range. Flat field correction for the WAXS data is usually
necessary. When necessary, adjust the parameters gmax and gmin in proc.py to pick
the g-range within which the SAXS and WAXS data are scaled to match intensity. If
the mismatch is significant, you should also make sure that the scattering geometry
defined in exp_setup is correct.

2. Buffer scattering subtraction

Subtraction of buffer scattering is done within proc_SWAXS() or proc_SAXS() as
well. Again, the protein concentration can be used as a scaling factor to adjust the
high-q intensity in the final data.

10°
10° }
i —
e
10 ¢
I
10° |
107
— lysb_S5mg
— lysb_buf _
— lysb_buf, scaled B
10—2 L L L
10°3 102 10! 10° 10’

-1

qA)
Fig.2 A plot generated by proc_SWAXS(). The sample scattering (red), buffer scattering (red), scaled
buffer scattering (green) and the result of background-subtracted data (cyan) are shown.

3. Gunier fit

A Gunier plot can be generated using Datald.plot_Guinier(). The Guinier fit is
performed within the specified g-range. If fix_ge=False, pyXS will adjust the ending
point of the g-range until it is below 1/R;. A call to Datald.plot_Gunier() returns the
best-fit o and R; values. Datald.plot_Guinier() is called from the analyze() function

in proc.py.

From proc.py:

analyze(dl,gstart=0.02,gend=0.08,fix ge=False, gcutoff=0.9,dmax=100)

From slnXS.py:

def analyze(dl,gstart,gend,fix_ge,qcutoff,dmax):
plt.figure(figsize=(14,5.5))
plt.subplot(121)
(I0, Rg) = dl.plot_Guinier(gs=gstart, ge=gend, fix ge=fix_ ge)
print "I0=%f, Rg=%f" % (IO, Rg)

plt.subplot(122)
dl.plot_pr(I0,Rg,gmax=1.2,dmax=100.)

plt.subplots_adjust(bottom=0.15,wspace=0.25)

)

1 1 1 1 1 1 1 1
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

¢ @A)
Fig.3 The plot generated by the analyze() function defined in sInXS.py. The fit is performed within the
range specified by the gstart and gend arguments, shown as the red dots.

Appendix: example codes

1. exp_setup.py

import numpy as np
import cPickle as pk

PYXS_PATH='/Users/lyang/pro/pyXS-v2'
import sys, os
PYXS_PATH in sys.path or sys.path.append(PYXS_PATH)

from Data2D import *
from RQconv import *
from slnXS import *
import matplotlib.pyplot as plt

es
es
es
es
es
es
es
es

= ExpPara()
.wavelength 0.874
.bm_ctr_x = 444
.bm_ctr_y 311
.ratioDw 40.8
.det_orient 0
.det_tilt 0
.det_phi 0
es.grazing_incident
es.flip False
es.incident_angle
es.sample_normal

False

0.
0

2

ew = ExpPara()
ew.wavelength
ew.bm ctr_x
ew.bm ctr_y
ew.ratioDw
ew.det_orient
ew.det_tilt -19
ew.det_phi 0
ew.grazing_incident
ew.flip True
ew.incident_angle
ew.sample_normal

35

1035
4.58
45

0.874

False

0.
0

2

the g grid can be defined arbitrarily
#qgrid np.arange(0.01,2.05,0.01)
ggrid mod_qggrid(np.hstack((np.arange(0.004,0.05,0.001),

np.
np.
np.
np.

arange(0.05,0.1,0.002),
arange(0.1,0.5,0.005),
arange(0.5,1.0,0.01),
arange(1.0,2.05,0.03))))

this file correspond to the averaged dark current

change/rebuild this file for new exposure time or gsaxs/gwaxs
DARK FILE S="dark-s.pkl"

DARK FILE W="dark-w.pkl"

if os.path.isfile(DARK_FILE_S) and os.path.isfile(DARK_FILE_W):

pkl_file = open(DARK_FILE S, 'rb')
sdark = pk.load(pkl_file)
pkl_file.close()
pkl_file = open(DARK_FILE W, 'rb')
wdark = pk.load(pkl_file)
pkl_file.close()
else:
sdark = Datald()
wdark = Datald()
sdark.load dark_from 2D(["darkla.90s_SAXS",

"darklb.90s_SAXS",
"darklc.90s_SAXS",

"darkld.90s_SAXS",
"darkle.90s_SAXS"],
es, "mask.SAXS" ,qgrid)
wdark.load dark_from 2D(["darkla.90s_WAXS",
"darklb.90s_WAXS",
"darklc.90s_WAXS",
"darkld.90s_WAXS",
"darkle.90s WAXS"]
ew, "mask.WAXS" ,qgri
pickle doesn't like PIL objects
sdark.exp para = None
wdark.exp para = None
pkl_file = open(DARK_FILE S, 'wb')
pk.dump(sdark, pkl_file)
pkl_file.close()
pkl_file = open(DARK_FILE W, 'wb')
pk.dump(wdark, pkl_file)
pkl file.close()

a)

sdark.exp_para es
wdark.exp para = ew

flat field correction includes the incident angle correction
FLAT FILE S="flat-s.pkl"
FLAT FILE W="flat-w.pkl"

if os.path.isfile(FLAT_FILE W):

pkl file = open(FLAT FILE W, 'rb')

wflat = pk.load(pkl_file)

pkl_file.close()

else:

fdark = Datald()

wflat = Datald()

fdark.load _dark_from 2D(["Feb09-dark-00.300s_WAXS",
"Feb09-dark-01.300s_WAXS",
"Feb09-dark-02.300s_WAXS",
"Feb09-dark-03.300s_WAXS",
"Feb09-dark-04.300s_ WAXS",
"Feb09-dark-05.300s_WAXS"],

ew, "mask.WAXS" ,wdark.qgrid)

wflat.load dark_from 2D(["Feb09-bright-00.300s_WAXS",

"Feb09-bright-01.300s_WAXS"],
ew, "mask.WAXS" ,wdark.qgrid)

wflat.data -= fdark.data

wflat.d2data -= fdark.d2data

wflat.err += fdark.err

wflat.save("wflat.dat")

wflat.exp para = None

del wflat.mask

pkl_file = open(FLAT_FILE W, 'wb')

pk.dump(wflat, pkl_ file)

pkl_file.close()

2. disp.py

#1/sw/bin/python

from exp_setup import *
import matplotlib as mpl
import sys

if (len(sys.argv) < 2):
print "Usage: disp.py file name root"
exit()

else:

saxs_current file
waxs_current file

sys.argv[1l]+'_ SAXS'
sys.argv[1l]+' WAXS'

if os.path.isfile(saxs_current_ file) and os.path.isfile(waxs_current file):
plt.figure(figsize=(10,6))

else:
plt.figure(figsize=(6,6))

if os.path.isfile(saxs_current file):

if os.path.isfile(waxs_ current file):
plt.subplot(121)

axl = plt.gca()
dsaxs = Data2d(saxs_current_file)
dsaxs.set_exp_ para(es)
paxl = Axes2dplot(axl,dsaxs)
paxl.plot(mask=sdark.mask)

if (len(sys.argv)>2):
paxl.add _dec("Q 0.1076 72 r-")
paxl.add dec("Q 0.2152 72 r-")
paxl.add _dec("Q 0.3228 72 r-")
paxl.add _dec("Q 0.4304 72 r-")

if os.path.isfile(waxs_current_ file):

if os.path.isfile(saxs_current file):
plt.subplot(122)

ax2 = plt.gca()
dwaxs = Data2d(waxs_current_file)
dwaxs.set_exp para(ew)
pax2 = Axes2dplot(ax2,dwaxs)
pax2.plot(mask=wdark.mask)

if (len(sys.argv)>2):

pax2.add_dec("Q 0.1076 72 r-")
pax2.add dec("Q 0.2152 72 r-")
pax2.add_dec("Q 0.3228 72 r-")
pax2.add_dec("Q 0.4304 72 r-")
pax2.add_dec("Q 0.5380 72 r-")
pax2.add_dec("Q 0.6456 72 r-")
pax2.add dec("Q 0.7532 72 r-")
pax2.add_dec("Q 0.8608 72 r-")
pax2.add_dec("Q 0.9684 72 r-")
pax2.add_dec("Q 1.0760 72 r-")
pax2.add _dec("Q 1.37 72 r-")
plt.show()
3. proc.py

#1/sw/bin/python
from exp_setup import *

import sys

import slnXS

slnXS.trans_mode = slnXS.TRANS_ FROM WAXS
s1lnXS.WAXS_THRESH = 100

if len(sys.argv)<3:
print "Usage: proc.py sample buf protein conc out_put file"
print "multiple files can be given for sample and buf"
print "e.g. ./proc.py \"lys20 file2\" lysbuf4 3.7 lyso20.dat"
exit()
else:
set plot_data=True to see curves from the individual files
a label can be given to the averaged curve
dl = proc_ SWAXS(sys.argv[l].split(),
sys.argv[2].split(),
sdark,wdark,
gmax=0.17,qmin=0.125,reft=-1,
conc=float(sys.argv[3]),
saveld=True,

waxsflat=wflat,
fix scale=-36.95
)

dl.save(sys.argv([4])

analyze(dl,gstart=0.02,gend=0.08,fix_ge=False,gcutoff=0.9,dmax=100)

plt.show()

4. proc-SAXS.py

#!/sw/bin/python2.6
from exp_setup import *

import sys

import slnXS

this assumes that the SAXS data does not contain scattering intensity that can
be used as a reference for scaling

slnXS.trans_mode = slnXS.TRANS FROM BEAM CENTER

if len(sys.argv)<3:
print "Usage: proc.py sample buf protein conc out_put file"
print "multiple files can be given for sample and buf"
print "e.g. ./proc.py \"lys20 file2\" lysbuf4 3.7 lyso20.dat"
exit()
else:
set plot_data=True to see curves from the individual files
a label can be given to the averaged curve
dl = proc_SAXS(sys.argv[1l].split(),
sys.argv[2].split(),
sdark,reft=-1,
conc=float(sys.argv[3]))
dl.save(sys.argv([4])

analyze(dl,gstart=0.02,gend=0.08,fix ge=False,qgcutoff=0.9,dmax=100)

plt.show()

